some theoretical physics work done with AI automation

E * exp(lambda * t * (1 + beta * cos(omega * t + phi))) * (sin((alpha * x) / hbar) + integral from 0 to infinity of psi(y) * exp(-gamma * y^2) dy) * (1 / G) * sum_{n=1}^infty (1/n^2) * (kappa * del^2 / del x^2 + mu * (p^2 / (2*m) + V(x))) / (c^2 * sqrt(1 - v^2/c^2))

E * exp(lambda * t * (1 + beta * cos(omega * t + phi) + delta * sin(theta * t^2))) * (sin((alpha * x) / hbar) + integral from -infinity to infinity of psi(y) * exp(-gamma * y^2 + i * k * y) dy + double_integral over z and w of rho(z,w) * exp(-eta * (z^2 + w^2)) dz dw) * (1 / G) * sum_{n=1}^infty (1/n^2 * exp(-n * pi * r / L)) * (kappa * del^2 / del x^2 + mu * (p^2 / (2*m) + V(x) + xi * (del V / del x)^2)) / (c^2 * sqrt(1 - v^2/c^2) * (1 + epsilon * t / tau))

E * exp(lambda * t * (1 + beta * cos(omega * t + phi) * (1 + zeta * log(1 + nu * t)))) * (sin((alpha * x) / hbar) + integral from 0 to infinity of psi(y) * exp(-gamma * y^2) dy + product_{k=1}^M (1 + iota_k * y_k / sigma_k)) * (1 / G) * sum_{n=1}^infty (1/n^2) * prod_{j=1}^N (kappa_j * del^2 / del x_j^2) + mu * (sum_{i=1}^D p_i^2 / (2*m_i) + V(x_1,...,x_D)) / (c^2 * sqrt(1 - v^2/c^2) + upsilon * (del^2 / del t^2 - c^2 * del^2 / del x^2))

Formula Combinada Completa: delta_J_x_t = E_omega [ - int (y_s - sum_k int h_k_s_tau_1_to_k * prod_i (x_tau_i + sigma * omega_tau_i) d_tau_1_to_k) * (sum_k sum_j int h_k_s_tau_1_to_k * prod_i_not_j (x_tau_i + sigma * omega_tau_i) * delta_dirac_tau_j_t d_tau_1_to_k) ds + lambda * int K_s_u * partial_phi_x_u_omega_u * delta_dirac_u_t du + (1/2) * sigma^2 * delta2_J_x_t2 dt ] approx (1/M) * sum_m w_m * delta_J_m_x_m_n onde J_x = E_omega [ int ( (1/2) * norm(y_t - sum_k int h_k_t_tau_1_to_k * prod_i (x_tau_i + sigma * omega_tau_i) d_tau_1_to_k)^2 + lambda * int K_t_s * phi_x_s_omega_s ds ) dt ], w_m prop exp( - (1/2) * (y_n - H_x_m_pred_n)^2 ), x_m_pred_n = x_m_n_minus_1 + Delta_t * f_x_m_n_minus_1_omega_m_n, com p_x prop exp(-gamma * int x_t^2 dt), p_y_given_x prop exp( - (1/(2*sigma^2)) * int norm(y - H_x)^2 dt ), e delta_J_x_t = 0 para equilibrio.

Adensada 1: delta_J_x_t = E_omega [ - int (y - H_x) * delta_H_x_t ds + lambda * conv_K_partial_phi_x_omega_t + (1/2) * sigma^2 * delta2_J_x_t2 dt ] approx (1/M) * sum_m w_m * delta_J_m_x_m onde J = E_omega [ (1/2) * norm(y - H_x)^2 + lambda * conv_K_phi ], H_x = sum_k V_k_x_plus_sigma_omega, w_m prop exp( - (1/2) * (y - H_x_m_pred)^2 ), x_m_pred = x_m + Delta_t * f_x_m_omega_m, com priors e likelihood, e delta_J = 0.

Adensada 2: delta_J_x = E [ - (y - H_x) * grad_H_x + lambda * grad_conv_phi_K + (sigma^2/2) * grad2_J dt ] approx avg_w_m_grad_J_m onde J = E [ (1/2) * norm(y - H_x)^2 + lambda * phi * K ], H = sum_V_k_(x + sigma_omega), w prop p_y_x, x_new = x + dt_f, com equilibrio em grad_J = 0.

Adensada 3: grad_J = E [ - (y - H_x) * grad_H + lambda * grad_phi_K + (sigma^2/2) * grad2_J dt ] approx sum_w_grad_J / M onde J = E [ (1/2) * |y - H_x|^2 + lambda * phi_K ], H = V(x + sigma_omega), w prop p(y|x)p(x), x' = x + dt_f, com grad_J = 0.

Adensada 4: grad_J = E[ -(y-Hx) * grad_H + lambda * grad_phiK + (sigma^2/2) * grad2_J dt ] approx sum_w_grad_J/M onde J = E[ (1/2)|y-Hx|^2 + lambdaphiK ], H=oplus_V(x+sigmaomega), w~p(y|x), x'=x+dt*f, grad_J=0.

F_n(psi, s, x, t) = zeta'(s) * S_n(x, t) + C_n(x, t) + G(x, psi) + alpha * F_{n-1}(psi, s, x, t)


where:

zeta'(s) = -sum_{m=1}^infty (ln m)/(m^s), s = sigma + i*tau, sigma in (0,1)

S_n(x, t) = int_Sigma sqrt(g) g^{mu nu} partial_mu X(x_n, t) partial_nu X(x_n, t) e^(i omega t + kappa ||x_n||^2) d^2 sigma

C_n(x, t) = a ||x_n||^2 + b sum_{i=1}^d x_{n,i} (1 - x_{n,i}^2) + sum_{j != i} c_{ij} x_{n,i} x_{n,j}

G(x, psi) = int_{R^d} H^{d-1}(y) e^(-||x - y||^2 / sigma^2) |psi(y, t)|^2 dy

x_{n+1} = a x_n + b sum_{i=1}^d e_i (1 - x_{n,i}^2) + sum_{j != i} c_{ij} x_{n,i} x_{n,j}

F_0(psi, s, x, t) = zeta'(s) S(x, t) + G(x, psi)

psi_out(x, t) = sum_{k=1}^K chi_{V_k}(x) int_{V_k} F_n(psi, s, x, t) e^(-||x - c_k||^2 / sigma^2) dx

with a = 1.4, b = 0.3, c_{ij} coupling, alpha in (0,1), omega, kappa, sigma > 0, V_k Voronoi cells with centroids c_k.

X[m] = sum(l=1 to L) sum(k in C_l) w_kl ( sum(n in S_kl) mu_kl(n) x[n] exp(-j (2 pi m n / N + alpha_kl n^2 + beta_kl n^4)) )

where:

w_kl = (sum(n=0 to N-1) mu_kl(n)) / (sum(k=1 to K) sum(n=0 to N-1) mu_kl(n))

mu_kl(n) = [ sum(j=1 to K) ( (|| x[n] - c_kl ||) / (|| x[n] - c_jl ||) )^(2/(m-1)) ]^(-1)

c_kl = (sum(n=0 to N-1) mu_kl(n)^m x[n]) / (sum(n=0 to N-1) mu_kl(n)^m)

We start from the classical Boltzmann distribution relation:

dn/dE = -n / (k_B T)

Let a = k_B T for simplicity:

(1) dn/dE = -n / a

By repeatedly differentiating this equation and re-substituting the lower-order derivatives, we derive the pattern for the k-th derivative. For k=7, the process is:

d^2n/dE^2 = d/dE(-n/a) = -(1/a) * dn/dE = -(1/a)*(-n/a) = n / a^2

d^3n/dE^3 = d/dE(n/a^2) = (1/a^2) * dn/dE = (1/a^2)*(-n/a) = -n / a^3

d^4n/dE^4 = d/dE(-n/a^3) = -(1/a^3) * dn/dE = -(1/a^3)*(-n/a) = n / a^4

d^5n/dE^5 = d/dE(n/a^4) = (1/a^4) * dn/dE = (1/a^4)*(-n/a) = -n / a^5

d^6n/dE^6 = d/dE(-n/a^5) = -(1/a^5) * dn/dE = -(1/a^5)*(-n/a) = n / a^6

d^7n/dE^7 = d/dE(n/a^6) = (1/a^6) * dn/dE = (1/a^6)*(-n/a) = -n / a^7

Thus, the 7th-order differential equation is:

d^7n/dE^7 = - n / a^7

Substituting back a = k_B T gives the final formula:

d^7 n / dE^7 + n / (k_B T)^7 = 0

This 7th-order equation is the escalated complexity version of the original first-order law. It is the foundational structure from the classical limit upon which quantum corrections (e.g., from the Wigner-Kirkwood expansion in powers of hbar) can be built. The physical solution that satisfies this equation and decays with energy is the standard Boltzmann distribution:

d^alpha psi / dt^alpha + Box_Riem psi + N(psi, nabla psi) + V_top(x, psi) = i hbar D_t psi + ∫_Σ K_holo(psi, ω) d^4 σ + S_ent

where:

d^alpha psi / dt^alpha = 1 / Gamma(1-alpha) ∫_0^t (t-tau)^(-alpha) partial_tau psi dtau

Box_Riem psi = partial_t^2 psi - nabla^2 psi (in Calabi-Yau metric)

N(psi, nabla psi) = |psi|^2 psi + (nabla psi)^4

V_top(x, psi) = phi^{ijk} |x|^(-1) e^(-|psi|/lambda)

D_t psi = partial_t psi + A_t psi

∫_Σ K_holo(psi, ω) d^4 σ = integral over 4D hypersurface of [Tr(A wedge dA + 2/3 A wedge A wedge A)] * psi * ω

S_ent = Ryu-Takayanagi entanglement entropy term

Langevin for trace:

d^2 x / dt^2 = - nabla V(x) + xi(t) + Gamma(x, dx/dt)

V(x) = phi^{ijk} exp(-|x|/lambda)

Osmotic rate path integral:

J = ∫ D[Phi] e^(-S[Phi]) nabla_Riem Phi

S[Phi] = Chern-Simons + Yamabe functional

Chern-Simons functional:

CS(A) = 1/(4 pi) ∫ Tr(A wedge dA + 2/3 A wedge A wedge A)

Nambu-Goto action:

S_NG = 1/(2 pi alpha') ∫ d^2 sigma sqrt(-det(g_ab))

Fokker-Planck for Wigner:

partial_t W + {H, W} = D nabla^2 W


Comentários